Although observation of elevated diaphragm on a chest radiogram and diphragmatic motion on ultrasound are valuable methods for assessing phrenic nerve injury, the best evaluation method is electrophysiological [3, 5, 13]. Moreover, we routinely followed up diaphragm elevation with x-ray investigation and fluoroscopy. Since diaphragm elevation is not correlated with phrenic nerve injury (subpulmonic effusion, subphrenic collection, atelectasia etc), these findings were excluded from the study. The main purpose of the control electrophysiological evaluation at the end of the third postoperative week was to detect patients with true axonal degeneration. More patients with phrenic nerve injury could be identified if evaluation were performed earlier in the postoperative period.
The main finding in this study was postoperative loss of left phrenic nerve conduction in five patients. All the left phrenic nerve dysfunction cases were in the hypothermic cardiopulmonary bypass groups (3 in CABG with CPB and 2 in heart valve replacement with CPB). No phrenic nerve dysfunction was observed in beating heart CABG or peripheral arterial bypass grafting patients. This result supports the conclusion that hypothermic cardiopulmonary bypass and ice-slush application around the heart may be related to phrenic nerve dysfunction. This inference is in accordance with other studies in the literature [2, 5–7].
No phrenic nerve dysfunction was observed in the normothermic beating heart group; the majority of patients in this group were LIMA harvested. This supports the view that LIMA harvesting and sternotomy do not play any role in phrenic nerve injury. Also, no phrenic nerve injury was observed in the peripheral arterial bypass group, supporting the conclusion that phrenic nerve injury is mostly associated with the conditions of hypothermic cardiac surgery.
A few electrophysiological studies of cardiac surgery patients have been published, but no comprehensive evaluation including all etiological factors has been reported. In particular, no previous study has included beating heart CABGs or other vascular interventions as control groups. In our study, hypothermic cardiopulmonary bypass and beating heart surgery were compared. Phrenic nerve latency time amplitude following surgery were in accordance with reports in the literature [13–16].
Axonal damage and demyelination are accepted as causes of reversible or irreversible injury of the phrenic nerve [2, 3, 5, 6]. We were supposed that the refractory nerve lesions in four patients were severe axonal damage and irreversible because of the lesions were not improved during one year. Because of the unilateral lesion and there was not dyspnea in these patients, surgical diaphragmatic plication was not considered. Nerve lesion in other one patient was thought due to conduction block and for this reason it was recovered within three months.
Left phrenic nerve damage is more frequent than right, and in this study all the injured nerves were left ones [2–4, 6, 13]. However, both left and right nerves have been equally exposed to cardiopulmonary bypass and systemic hypothermia, suggesting that the hypothermic cardiopulmonary bypass is not itself the cause of the damage. Two possible explanations remain for the etiology. One is the topical cardiac cooling; the other is the LIMA harvesting. LIMA harvesting has also been implicated in phrenic nerve injury in the literature [5, 6, 10]. However, we observed no nerve injury in our beating heart CABG group, most of whom were LIMA harvested. Moreover, our beating heart results do not support the opinion that sternal retraction causes phrenic nerve injury [6, 12].
If topical cardiac cooling is the major cause of phrenic nerve injury, why is the frequency of injury to left and right nerves not similar? It is common knowledge that the left ventricle is the major target for myocardial protection in open heart surgery. For this reason, both cardioplegia and topical cooling frequently orientate to the left ventricle. Ice-slush especially is applied around the left ventricle and into the left portion of the pericardial cavity. Thus, the right phrenic nerve is frequently preserved from cold inury.
Some studies have suggested that phrenic nerve conduction velocity is slowed by cooling [3, 4, 6, 7]. In this study, we observed no statistically significant slowing in bilateral phrenic nerve velocity between preoperative and postoperative evaluation, except in five patients. Furthermore, the phrenic nerve amplitudes were not different, contrary to claims in the literature [6, 7].
Bilateral phrenic nerve injury has been reported to aggravate respiratory distress and prolong mechanical ventilation, but in no case did we observe bilateral nerve injury. Postoperative respiratory functions were not affected in our patients with unilateral phrenic nerve injury: mechanical ventilation times were similar in the phrenic nerve injury group and the normal phrenic function group [17–19].