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Abstract

Background: Post-hepatectomy liver failure contributes significantly to postoperative mortality after liver resection.
The prediction of the individual risk for liver failure is challenging. This review aimed to provide an overview of
cytokine and growth factor triggered signaling pathways involved in liver regeneration after resection.

Methods: MEDLINE and Cochrane databases were searched without language restrictions for articles from the time
of inception of the databases till March 2019. All studies with comparative data on the effect of cytokines and
growth factors on liver regeneration in animals and humans were included.

Results: Overall 3.353 articles comprising 40 studies involving 1.498 patients and 101 animal studies were identified
and met the inclusion criteria. All included trials on humans were retrospective cohort/observational studies. There
was substantial heterogeneity across all included studies with respect to the analyzed cytokines and growth factors
and the described endpoints.

Conclusion: High-level evidence on serial measurements of growth factors and cytokines in blood samples used to
predict liver regeneration after resection is still lacking. To address the heterogeneity of patients and potential
markers, high throughput serial analyses may offer a method to predict an individual’s regenerative potential in the
future.
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Introduction
Post-hepatectomy liver failure (PHLF) is a serious com-
plication after liver resection and the incidence varies
from 1.2 to 32% [1–4]. PHLF is defined as functional de-
terioration of the liver associated with an increased
international normalized ratio (INR) and hyperbilirubi-
nemia on, or after, the fifth postoperative day [1]. There
are recommendations that PHLF could be prevented if
the future liver remnant (FLR) is not smaller than 20%
of the original liver size in patients with normal liver
function and 30–40% in patients with steatohepatitis or
cirrhosis [5, 6]. Nevertheless, even with adequate pre-

operative assessments and careful indications, PHLF is a
major contributor to mortality rates of up to 5% after
liver resection [7, 8]. Various patient- (comorbidities,
age, and previous chemotherapy), parenchyma- (cirrho-
sis, fibrosis, cholestasis, and steatosis), and surgery-
related factors (extent of resection, blood loss, and ische-
mia reperfusion injury) affect the regenerative capacity
of the FLR [9, 10]. However, to predict the adequate size
and individual regenerative capacity of the FLR remains
a significant challenge for clinicians, surgeons, and scien-
tists. The current PHLF therapy focuses on symptomatic
and supportive treatment of the progredient dysregula-
tion in the hepato-organic axis. However, the ultima ra-
tio for PHLF is liver transplantation if patients fulfill
listing regulations. This poses a marked morbidity and
mortality risk for patients, and surgeons and clinicians
should aim to ensure that postoperative liver failure does
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not occur. In clinical practice, there is a high variety of
morphological and biochemical assessment methods for
qualitative (indocyanine green retention rates; LiMAx-
tests, MELD or CHILD-PUGH scores) and quantitative
(computed tomography liver volumetry, analysis of biliru-
bin, transaminases, albumin) predictions for liver function
in the context of liver resection [11]. However, non-
invasive individualized identification of valid predictive
and prognostic biomarkers of PHLF based on the cyto-
kines and hepatic growth factors in the liquid-biopsy sam-
ples might be a novel approach in the peri-operative
diagnosis and monitoring of regeneration on a molecular
basis. The growing subgroup of high-risk patients with
hepatic steatosis, steatohepatitis, or sinusoidal obstruction
syndrome, after neo-adjuvant chemotherapy, in particular,
would benefit from markers that indicate the livers’ indi-
vidual abilities to cope with extended surgical resection
[12]. Since liver regeneration is a well-orchestrated process
controlled by various cytokines and growth factors, these
might also be promising targets for modulation. Despite
the growing knowledge of regeneration-associated signal-
ing pathways and regulatory mediators in rodents, conver-
sion of the process into humans and clinical practice has
just begun [13].
Therefore, the purpose of this review was to systemat-

ically summarize current evidence on the cytokine- and
growth factor- mediated signaling pathways in liver re-
generation for the benefit of clinicians and surgeons, and
to discuss their suitability for individual mediator-based
regeneration predictions in patients.

Methods
Protocol and registration: there was no review protocol
and the study was not registered.
Eligibility criteria: inclusion of the studies was based

on the Population, Intervention, Comparison, Outcome
and Study design (PICOS) strategy with the following in-
clusion criteria [14]:

� Population: all patients undergoing liver resection
� Intervention: reports of measurements of cytokines

and growth factors in the context of PHLF
� Comparator: no measurements of cytokines and

growth factors,
� Outcome: association with PHLF
� Study design: any study except study protocols,

letters, and common overviews.

Report characteristics: There were no restrictions re-
garding languages, years of publication, or publication
status in the initial search. Original articles, case reports,
clinical trials, reviews, meta-analyses, and systematic re-
views were all included. In addition, reference lists of
relevant articles and reviews were crosschecked for

additional studies. Non-peer reviewed studies were
excluded.
Information sources: The MEDLINE and Cochrane Li-

brary databases were searched for relevant studies; last
search was conducted in April 2019.
Search: Search strategies included the following Medical

Subject Headings (MeSH) in various combinations: liver
regeneration, liver resection, partial hepatectomy, major
liver resection, hemi-hepatectomy, post-hepatectomy liver
failure, cytokine, growth factor, hepatocyte growth factor
(HGF), tumor necrosis factor alpha (TNF-α), interleukin
6, epidermal growth factor (EGF), insulin-like growth fac-
tor (IGF), vascular endothelial growth factor (VEGF),
fibroblast growth factors (FGFs), angiopoietin, platelet-
derived growth factor (PDGF), proliferating cell nuclear
antigen (PCNA), Ki-67, and micro-RNA (miRNA).
Study selection: Two authors (AN and YT) independ-

ently screened the titles and abstracts of all retrieved ref-
erences and obtained full-text articles in cases of
potential eligibility. Full texts of all animal studies and
studies including patients that provided data on cyto-
kine- and growth factor- mediated regeneration pro-
cesses were analyzed according to the eligibility criteria.
A third author (KH) was consulted in case of disagree-
ment. Three thousand three hundred fifty- three articles
were identified. After excluding duplicates (n = 294) and
non-English studies (n = 43), 1172 animal studies and
1844 human studies were analyzed. Ultimately, 40 stud-
ies including 1498 patients were included in this review
(Fig. 1). Studies were included based on predefined se-
lection criteria: relevant information regarding measure-
ments of available markers; clearly defined outcome
parameters (such as PHLF according to International
Study Group of Liver Surgery definitions); regeneration
measured by clinically relevant methods such as com-
puterized tomography scans, magnetic resonance im-
aging, or well-established laboratory methods such as
cytology including any standard staining techniques (i.e.
hematoxylin and eosin, Papanicolaou); molecular detec-
tion methods (with or without immunocytochemistry);
any form of reverse-transcriptase polymerase chain reac-
tion ([RT]-PCR) tests; and protein analyses which may
include Western Blots or Fluorescence-activated cell
sorting.
Studies were excluded if the language was not English,

not published in peer-reviewed journals, and if the
above-mentioned definitions of cytology or molecular
diagnostics were not met. However, human trials in-
cluded no randomized controlled trials, no multi-center
trials, 37 prospective single-center trials, and 3 retro-
spective analyses. Case numbers were < 50 in the major-
ity of trials.
Data collection process: Data extraction from reports

was performed in duplicate using excel files. Due to the
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narrative character of the reviews and the analyses of
animal as well as human studies, data were extracted
comprehensively. The following data were extracted
from every article: first author, year of publication, study
type, enrollment period, sample size, definition of regen-
eration, incidence of PHLF, timing of detection, the de-
tection protocol, target proteins, genes and antigens,
reported outcomes, and the use of multivariate models.
Risk of bias in individual studies: Since no clinical end-

point was evaluated, these studies were not assessed for
risk of bias according to Methodological Index for Non-
Randomized Studies criteria [15].

Results
Temporal sequence of regeneration
On a cellular level, regeneration after resection consists of
a compensatory hypertrophy followed by hyperplasia of
the remaining hepatocytes. Three distinctive phases de-
scribe this phenomenon: initiation (0–5 h after resection),
proliferative (5–144 h), and termination [16]. The injury
inflicted by hepatic resection triggers a signaling cascade
that mobilizes immune cells to remove necrotic tissue,
changes metabolic processes, and induces regeneration

mediated simultaneously by cytokines and growth factors
within the first five hours after hepatectomy [17]. How-
ever, this initiation phase trigger is poorly defined [18].
Hemodynamic changes, activation of the innate immunity,
and activation of the Wnt/β catenin and Notch signaling
pathways are discussed as major drivers of regeneration
induction.
Early hemodynamic alterations in the quantity and

quality of portal vein flow have been implicated in be-
ginning the cascade activation. Increased portal volume
generates shear stress and the hepatic arterial buffer re-
sponse reduces the arterial blood flow. Together with ac-
tivation of the innate immunity, this changes, within 30
min, the concentration of lipopolysaccharides (LPS) in
the portal circulation which originate from enteric bac-
teria and increases the growth factor and cytokine avail-
ability for the remaining hepatocytes [19–21] by
enhanced release of HGF from the extracellular matrix
as well as EGF from Brunner glands [22, 23]. Thereby,
nuclear factor KB (NF-KB) becomes free and excites
tumor necrosis factor (TNF) and interleukin 6 (IL6)
transcription within 30 mins to 1 h after resection [24].
Furthermore, the intrahepatic blood volume and shear

Fig. 1 Study selection process
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stress increases the urokinase plasminogen activator
(uPA), activates the extracellular matrix-attached HGF,
and increases the activity of HGF- and EGF-activated re-
ceptors [25].
Additionally, the pervasiveness of liver sinusoidal

endothelial cell (LSEC) fenestrae is enhanced and the se-
cretion of nitric oxide sensitizes hepatocytes to HGF
[26]. Quiescent hepatocytes enter the cell cycle and pro-
gress from the G0 to the G1 phase of the cell cycle [27].
Two hours after resection, the remaining hepatocytes
start to synthesize VEGF, FGF-1 and -2, and
angiopoietin-1 and -2 to stimulate the endothelial cells
(ECs), PDGF to switch on hepatic stellate cells (HSCs),
and TGF-α to act on biliary epithelial cells, and release
HB-EGF and amphiregulin (AR). Three hours after re-
section, new HGFs are produced by the HSCs and ECs.
The proliferative phase starts 5 h after resection and

can be divided into a period in which proliferation of he-
patocytes and cholangiocytes is induced for 72 h, and an
angiogenic phase of 2–3 days in which HSCs, ECs, and

Kupffer cells (KCs) proliferate in response to cytokines
and growth factors produced by hepatocytes [20].
In the termination phase, autonomic hepatocyte prolif-

eration is restrained by anti-proliferative factors such as
transforming growth factor-beta (TGF-β) released from
the HSCs and KCs, and activin to ensure normal liver
mass and function [28]. However, this important step is
not yet well elucidated.

Potential predictive biomarkers
To predict the individual liver regenerative capacity after
resection by liver biopsy or preoperative blood samples
is an ambitious goal, but offers a great potential to re-
duce the incidence of PHLF and morbidity as well as
mortality rates. The triggers of liver regeneration and
modulating cytokines as well as growth factors are
closely linked (Fig. 2). In this section, an overview of the
key initiators and augmenters during liver regeneration
will be provided and the available clinical data on the

Fig. 2 Liver regeneration mechanism after resection. 1. Hypoxia via reduced arterial blood flow. 2. Accumulation of platelets and release of
growth factors at site of injury. 3. Kupffer-Cell activation via LPS. 4. Activation of regeneration via shear stress
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Fig. 3 Overview of cytokines, growth factors and biological markers involved in liver regeneration
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potential of these factors to predict regeneration capacity
will be summarized (Figs. 3 and 4).

Growth factors
Hepatocyte growth factor (HGF)
HGF is a hepatocyte mitogen, originally discovered in
1984, that binds to HGFR/c-MET expressed in paren-
chymal and non-parenchymal liver cells [29–31]. HGF is
synthesized by mesenchymal cells and is attached in an
inactivated form to the liver matrix and other organs
[32, 33]. In rodents, HGF has been studied intensely.
Following a partial hepatectomy, HGF plasma levels in-
crease rapidly (10 to 20 times) to reach concentrations
up to 250 ng/ml in rats [34–36]. In the first hours (initi-
ation phase) after a hepatectomy, the increase in HGF
originates from existing transcripts of the HGF gene that
are localized in the KCs and ECs of normal livers [37]. It
is then stimulated in the productive phase by IL-6 and
TNF-α triggering from resident immune cells, such as
the KCs (hepatic macrophages) that contribute to the
immediate response following injury and primarily pro-
duce the IL-6 s used for stimulating acute-phase protein
production [38, 39]. Later, HGF is newly synthesized by
ECs and HSCs. HGF gene expression is also upregulated
in the mesenchymal cells of other organs after a liver re-
section, including the lungs, kidneys, and spleen [40]. Via
the HGFR/c-MET receptor, HGF activates the STAT3,
PI3K/NF-KB/mTOR, and the RAS/RAF pathways. Data
from rodent studies show that a lack of c-MET delays re-
generation, leads to liver necrosis and jaundice, and is as-
sociated with a high mortality rate [30, 41–43]. A
potential use of an exogenously administered HGF activa-
tor as an augmenter for liver regeneration was investigated
in rats. Recombinant human HGF-activator (rhHGF) was
administered via the portal vein and proliferating cell nu-
clear antigen labelling indices and the liver regeneration

rates were significantly higher in the rhHGF-activator
group compared to control animals [44].
In humans, HGF, in the context of liver regeneration,

has been studied mostly in the setting of living donor
liver transplantation and a few studies after resection.
All these studies were descriptive and did not analyze a
comparable clinical endpoint. However, the HGF levels
were elevated after resection on postoperative days
(PODs) 1–3 and correlated significantly with the degree
of growth of the FLR before stage 2 of the associating
liver partition and portal vein ligation for staged hepa-
tectomy (ALPPS) procedure. Stage 1 of the ALPPS pro-
cedure begins with transection of the parenchyma along
the intended line of resection, and the FLR is cleaned of
all tumor tissue in the case of bilobar tumors by partial
resection. A temporary portal vein ligation leading to the
larger liver lobe is then performed. After a recovery
period of 1–2 weeks, Stage 2 is performed in which the
deportalized liver is removed to render the patient com-
pletely tumor-free [45]. Furthermore, HGF levels were
found to be significantly elevated on PODs 1, 7, and 14
after living donor hepatectomy and were correlated with
recipient liver volumes on POD 14 [11, 46–55]. Tomiya
et al. reported an association of serum HGF levels with
hepatocellular dysfunction and systemic inflammation
[56]. Takeuchi et al. analyzed bile fluid from percutaneous
transhepatic biliary drainage fluid in 24 patients with cho-
langiocarcinomas undergoing major liver resection and
demonstrated that bile, not serum HGF levels on PODs 1
and 3, correlated with the incidence of PHLF. The authors
suggested that bile HGF is a potentially useful marker of
liver function after liver resection [57]. The outcome dif-
ference between HGF serum and bile levels in association
with liver regeneration might be explained using the previ-
ous finding that 125I-labeled HGF was found to be detect-
able in the bile and can be excreted from the liver in
higher concentrations than in serum [58, 59].

Fig. 4 Immunhistochemical markers of regeneration
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Furthermore, the different serum analysis results are prob-
ably due to differences in patient cohorts (cholangiocarci-
noma with cholestasis vs. various entities) and sample
sizes.

Epidermal growth factor (EGF) family
The production of EGF in the Brunner’s glands of the
duodenum increases within 30min after a liver resection
and is stimulated by HGF activation, operative trauma as-
sociated with the increase of catecholamines from the ad-
renal glands, release of transforming growth factor α
(TGF-α) from hepatocytes 2–3 h after hepatectomy, and
heparin-binding EGF (HB-EGF) from KCs and ECs as well
as AR within 90 mins after a liver resection. All of these,
like EGF, are ligands of the EGF receptor (EGFR) [60–66].
The EGFR is phosphorylated within 60 mins after a hepa-

tectomy and activates via the Ras-Raf-MEK cascade regen-
eration specific transcription factors (C-myc, C-jun, C-fos),
PI3K/AKT/mTOR pathway, and NF-kB system, as well as
protein synthesis and cell division via the eukaryotic initi-
ation factor 4E (eIF4E) [20, 22, 41, 42, 67–70]. In rodents,
AR and HB-EGF knockout impaired hepatocyte mitosis
and led to a delay of liver regeneration and a blockage of
EGFRs causing hepatic decompensation. HB-EGF treat-
ment induced protective and regenerative mechanisms fol-
lowing anticholestatic liver injuries [69, 71, 72].
Data on serial measurements of EGF/EGFR ligands in

human plasma after surgery in the context of regener-
ation are extremely rare. Yamada et al. measured serum
HB-EGF levels after liver resection and found that the
levels were highest between PODs 5 and 7 in patients
with major liver resection. Maximal plasma HB-EGF
levels correlated significantly with the FLR volume [73].
Tomiya et al. described a significant correlation of TGF-
α levels with the resected liver volume and the increased
volume of the remaining liver in their analysis of 22 hep-
atectomized patients with liver cancer. They suggested
using serum TGF-α levels as a parameter for evaluating
liver regeneration after resection [74]. AR, which is stim-
ulated by acute-phase protein inflammatory signals, has
so far only been described in the context of hepatocarci-
nogenesis and colorectal liver metastases, but not regen-
eration in humans.

Vascular endothelial growth factor (VEGF)
VEGF, FGF-1 and -2, PDEF, and angiopoietin-1 and -2
regulate vascular angiogenesis and restoration of the si-
nusoidal network during the angiogenic phase of liver
regeneration after compensatory hypertrophy. The
VEGF family plays a crucial role in regulating vasculo-
genesis, angiogenesis, and lymphangiogenesis by activat-
ing VEGF receptors 1–3 on the surface of endothelial
cells of pre-existing blood vessels [75]. VEGF induces
the proteolytic activity of matrix metalloproteinases and

thereby supports the growth of endothelial cells for for-
mation of new blood vessels as well as the proliferation
of ECs, smooth muscle cells, and fibroblasts within the
regenerating liver [76–78]. Some animal studies are
available [77–83]. VEGF was found to be a central regu-
lator of recruitment for bone marrow progenitors of
liver sinusoidal endothelial cells (LSECs) as well as their
engraftment in the liver during liver regeneration after
resection in rats [84]. VEGF-A, in particular, was found
to be upregulated in rat hepatocytes 48 h after partial
hepatectomy [85]. Delivery of VEGF-A increased liver
masses in mice, but did not stimulate the growth of he-
patocytes in vitro, unless the LSECs were also present.
Selective activation of VEGFR-1 stimulated hepatocytes,
but not endothelial proliferation in vivo, and reduced
liver damage in mice exposed to a hepatotoxin [86]. In-
creases in VEGF receptor Flt-1 in arterioles, sinusoidal
ECs in hepatocytes, and Flk-1/KDR in large vessels were
detected after 70% partial hepatectomy in rats [87].
VEGFR-1 signaling facilitated liver recovery by reconsti-
tution of sinusoids through recruitment of VEGFR-1-
expressing macrophages and by affecting gene expres-
sion including hepatotrophic and pro-angiogenic growth
factors in mice [88]. Furthermore, VEGFR-2 activity
showed a significant increase after partial hepatectomy
in transgenic VEGFR-2-luc mice with maximum signals
recorded on POD 3 [89]. However, data on humans are
sparse. Aryal et al. detected elevated serum VEGF-As
and platelet-derived VEGF-As in 37 patients 4 weeks
after liver resections. Compared to minor liver resection,
platelet-derived VEGF-A levels were higher following
major resection and VEGF-A levels correlated with the
FLRs [90]. Furthermore, the serum level of soluble
VEGFR-2 was a predictive factor for impaired regenera-
tive capacity in humans during the progression from
chronic liver disease to liver cirrhosis, but no data were
available after resection [91].

Insulin-like growth factor (IGF)
IGF factors 1 and 2 mediate growth-promoting mito-
genic effects of growth hormones and are involved in
the differentiation and inhibition of apoptosis in various
cells [92]. Their signals are transmitted through type-1
IGF tyrosine kinase receptors (IGF-1R) mediating both
IGF-I and IGF-II signaling, while the type-2 receptor
(IGF-2R) decreases the bioavailability of IGF-II. IGF ac-
tivity is modulated by 6 insulin-like growth factor bind-
ing proteins (IGFBPs) [93, 94]. The liver is the main
source of circulating IGF-1, synthesized primarily in re-
sponse to growth hormone. Within the normal adult
liver, IGF-II expression is downregulated and IGF-I, al-
though highly expressed, does not exert its actions due
to low IGF-IR expression on hepatocytes [95]. However,
the role of the IGF-system in the injured liver has not
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been elucidated. Liver regeneration was found to be de-
layed in mice lacking the Nrf2 transcription factor be-
cause of oxidative stress mediated insulin/IGF-1
resistance that lead to impaired activation of p38
mitogen-activated kinase, Akt kinase, and downstream
targets after hepatectomy [96]. Desbois-Mouthon et al.
reported that the growth hormone-IGF-1IGF-1R axis
was necessary for liver regeneration after partial hepatec-
tomy in liver-specific IGF-IR knockout mice [97]. Tar-
geted over-expression of IGF-1 in activated HSCs
accelerated liver regeneration after acute injury and was
mediated in part by up-regulation of HGF and downreg-
ulation of TGF-β1 [94, 98]. IGF-1 also induces cellular
senescence and reduces fibrosis [99]. In animal models,
IGF-1 treatment improved non-alcoholic steatohepatitis
(NASH) and cirrhosis [100]. IGF-2 is produced by peri-
central hepatocytes to promote hepatocyte proliferation
and repair tissue damage in the setting of chronic liver
injury’; however, this is distinct from the signaling that
occurs after resection [101]. Proliferating hepatocytes in
rodents responded to IGF-2 through both insulin recep-
tors and IGF-1R. Increased IGF1-receptor expression is
reported in hepatocellular carcinoma and patients with
chronic hepatitis, which may represent an attempt to
stimulate hepatocyte regeneration [102, 103]. Ross et al.
demonstrated that key mRNAs involved in the IGF-I
axis continue to be expressed in cirrhotic liver despite
end-stage liver disease, and therefore, might contribute
to the regenerative capacity of the damaged liver [104].
In contrast, Wallek et al. observed significantly lower
IGF-1 serum levels in 127 patients with chronic liver dis-
ease [105]. However, data on IGF, IGF-1R, or IGFBPs in
the context of post-resection regeneration are extremely
rare [105]. Stefano et al. observed IGF-1R overexpression
in patients receiving cadaveric liver donations 8–12 h
after cold ischemia, suggesting that the IGF-1R is in-
volved in liver regeneration [102]. The role of IGF-2 in
liver regeneration in humans was investigated by Liu
et al. [101]. They concluded that it plays a role in regen-
eration after chronic injuries like Wilson’s disease, but
not in acute recovery after trauma. Based on the sparse
information available, additional studies are needed to
elucidate the role of IGF-I in human liver regeneration.

Fibroblast growth factors (FGFs)
The FGF family is comprised of 22 members in humans
and mice with highly different structural characteristics
and mechanisms of action. FGF-1 and -2 are produced by
hepatocytes [94], and are released by activated HSCs. To-
gether with other growth factors they are responsible for
the process of vascular angiogenesis and restoration of si-
nusoidal networks in the regenerative liver. FGFs transmit
signals through 4 tyrosine kinase FGF receptors (FGFRs)
and have mitogenic effects in vitro and in vivo [106, 107].

Hepatocyte mitosis is arrested and regeneration was found
to be impaired after partial hepatectomy in FGFR-
deficient mice [107]. A potential cytoprotective effect of
FGF-1 and -2 during liver regeneration was discussed
since mice lacking the FGF1R and FGF2R showed im-
paired cytochrome P450 expression, liver failure, and in-
creased mortality after liver resection [108]. The
treatment of primary hepatocytes isolated from the regen-
erating liver with the FGF-7 protein activated ERK1/2 and
promoted proliferation [109]. FGF-19 and FGF-21 pro-
mote important hepatoprotective activities and, in the
light of promising mouse experiments, are considered to
have a potential application for the clinical management
of acute liver injuries [110]. After liver resection, a rapid
but transient bile acid overload in the liver leads to the
first wave of proliferative signaling in the remnant hepato-
cytes. Bile acids trigger hepatocyte proliferation through
activation of several nuclear receptors. Following biliary
passage into the intestines, enterocytes reabsorb the bile
acids, which result in the activation of farnesoid X recep-
tor (FXR) and excretion of FGF-19/FGF-15 and its release
into the enterohepatic circulation. FGF-15, a bile-acid-
induced ileum-derived enterokine, was found to be essen-
tial for bile acid homeostasis and was identified as an es-
sential mediator of the liver growth-promoting effects of
bile acids during liver regeneration in mice [111–113].
This is interesting since regeneration is impaired in chole-
static liver as well as in liver with interrupted bile acid
provision through enterohepatic circulation, e.g., by exter-
nal biliary drainage [112, 114]. Padrissa-Altés et al. dem-
onstrated that the FGF-15/FGFR-4/STAT-3/Fox-M1 axis
controls hepatocyte proliferation and that loss of FGF-R1,
−R2, and -R4 evokes liver failure after partial hepatectomy
[115]. Recently, the FXR agonists have been shown to pro-
mote regeneration via the gut-liver axis and might be
beneficial for patients with hepatobiliary tumors undergo-
ing resection [116]. Data on the effects of FGFs after re-
section in humans are extremely rare and no
recommendations for their use as biomarkers can be
provided.

Platelet-derived growth factor (PDGF)
In humans, low preoperative platelet counts correlates
with higher PHLF rates and higher mortality after hepa-
tectomy [117]. Platelets accumulate within the initiation
phase of regeneration at the resection surface, are critical
modulators of tissue repair, and contain granules of
HGF, serotonin, VEGF, and IGF [118, 119]. Platelets are
potent inducers of liver regeneration after partial hepa-
tectomy and platelet activation as well as granule release
increase after liver resection [120, 121]. Platelets adhere
to LSECs and hepatocytes and induce the proliferation
of these cells [77, 122, 123]. Furthermore, they
synthesize and store PDGFs [124], which switch on
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HSCs, enhances their growth, and propagates signaling
(e.g., TGF-β1). Together with their ligands, they regulate
cell growth and angiogenesis [91, 125] producing new
mature well-stabilized blood vessels. PDGFs are stored
in α-granules and released during the very early stages
of liver regeneration [126]. Furthermore, their release
from activated hepatocytes 2–5 h after partial hepatec-
tomy has been demonstrated [25]. PDGF-A and -B
undergo intracellular activation during transport in the
exocytic pathway for subsequent secretion, whereas
PDGF-C and -D are secreted as latent forms that require
activation by extracellular proteases. PDGFs bind to the
tyrosine kinase receptors, PDGFR-α and PDGFR-β [127].
High levels of PDGFR-α expression were detected 3 h
after partial hepatectomy in mice. In contrast, PDGFR-α
knockout mice showed impaired PDGF signal transduc-
tion that compromised extracellular signal-regulated ki-
nases and AKT (a serine/threonine-specific protein
kinase) activation. However, PDGF is alleviated by tem-
poral compensatory increases in the expression and acti-
vation of EGFR and HGFR along with rebound
activation of extracellular signal-regulated kinases and
AKT at 24 h [128]. These results attest to the signaling
‘flexibility’ that is a well-recognized theme in liver regen-
eration. Similar to most growth factors in liver regener-
ation following a liver resection, ligands of PDGFR-α
appear to play a significant, but replaceable role [129].
The hepatic expression of all PDGF isoforms and re-

ceptors at both mRNA and protein levels increased in
rats after acute liver injury, peaked at 4 weeks, and de-
creased thereafter to near basal levels after 8 and 12
weeks [130]. Conditional PDGFR-β deletion in HSCs led
to disrupted PDGF signaling with prolonged liver injury
in rodents. However, the overall regeneration capacity
was not affected. The role of PDGFs in liver regener-
ation in humans has not been fully analyzed [131]. Star-
linger et al. demonstrated that the profile of the α-
granule content released from the platelets affects the
postoperative outcome. They provided evidence that in-
creased postoperative portal venous pressure is associ-
ated with an unfavorable α-granule release profile (high
thrombospondin 1/low VEGF). In their analysis of 157
patients undergoing liver resection, morbidity and pro-
longed hospitalization were associated with this unfavor-
able protein profile. However, further studies are
warranted to elucidate the role of PDGFs as markers for
liver regeneration.

Angiopoietin (Ang)
After exposure of the liver to injurious events, angio-
poietins are produced by hepatocytes. Together with
other factors, Ang-1 and -2 are responsible for vascular
angiogenesis and restoration of sinusoidal networks via
duplicating hepatic endothelial cells. They transmit

signals via the Tie-1 and -2 tyrosine kinase receptors
[132]. Ang-2 dynamically modulates liver regeneration
by orchestrating hepatocyte and LSEC proliferation. The
expression is downregulated in the LSECs during the
early phase of post-hepatectomy liver regeneration and
recovers in the later phases [133]. During the early
phase, Ang-2 downregulation leads to hepatocyte prolif-
eration by reduced LSEC TGF-β1 production and en-
hanced expression of cyclin D1 in a paracrine manner.
In contrast, in the recovery phase, it enables non-
parenchymal cell regeneration and angiogenesis in an
autocrine manner by controlling LSEC VEGFR-2 expres-
sion and Wnt-2 signaling [134].
Ang-2 levels increased in liver biopsy samples of 37

patients with primary acute liver failure, regardless of
their etiology or liver dysfunction status, while it was al-
most absent in a healthy control group [135]. Data re-
garding Ang-2 expression after liver resection are not
valid for regeneration since they were also obtained in
HCC patients who had varying Ang-2 expression within
the tumors [136].

Cytokines
Cytokines are pleiotropic regulatory peptides that are
produced in most types of liver cells [137]. Constitutive
production is minimal, but upon physiologic or patho-
logic stimulation, the key regulators, TNF-α and IL-6,
mediate hepatic inflammation, apoptosis, and necrosis of
damaged liver cells, and also mediate the regeneration of
liver tissue after injuries.

Tumor necrosis factor alpha (TNF-α)
TNF-α is a proinflammatory cytokine that belongs to
the TNF superfamily and stimulates the synthesis of
acute-phase proteins. It activates the NFκB signaling
pathway directly via binding on the TNF receptor 1
(TNF-R1) on KCs and indirectly through induction of
the inhibitory KB kinase [138, 139]. Furthermore, it acti-
vates hepatocyte proliferation through stimulation of c-
Jun N-terminal kinase, phosphorylation of c-Jun-
transcription-factor in the nucleus, and induction of tar-
get gene transcription, such as cell division cycle protein
2 homolog (CDC2/CDK-1) [22, 140]. Hepatic macro-
phages (KCs) are the main source of TNF-α triggered ei-
ther by gut-derived factor lipopolysaccharide (LPS)/Toll-
like receptor 4 (TLR4) signaling, or by C3a and C5a
components of the complement system. TNF-α was
found to sensitize hepatocytes to growth factors in a rat
partial-hepatectomy model [141]. Its gene expression is
upregulated 30–120 min after hepatectomy [142, 143].
TNF-α and Il-6 induction requires the adaptor protein
MyD88. In mice lacking this protein, the TNF-α and Il-6
levels were lower after partial hepatectomy and liver re-
generation was slower [18]. TNF-α also promotes KC
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functions via autocrine stimulation and boosts their acti-
vation [144]. However, complete deletion of the TNF-α-
gene did not delay regeneration which indicates that
TNF-α is not involved in the later stages of regeneration
[47, 145]. In humans, the role of TNF-α has been inves-
tigated in the context of liver graft regeneration after liv-
ing donor liver transplantation. Sasturkar et al.
investigated 25 patients undergoing right donor lobe
hepatectomy and reported significantly higher TNF-α in
their sera on POD 1 compared with baseline measure-
ments [47]. Furthermore, a correlation of higher pre-
operative serum levels of TNF-α with increased relative
liver volumes at POD 7 was reported. Serial measure-
ments of TNF-α before and after hepatic resection de-
tected only slight elevations, but no correlations with
hepatic regeneration [146]. Based on those data, the
monitoring of regeneration by TNF-α cannot be recom-
mended [147].

Interleukin 6 (IL-6)
IL-6 is secreted during inflammatory conditions upon
LPS stimulation in a TNF-α-dependent/−independent
manner [148, 149]. In response to liver injury, IL-6 me-
diates the acute-phase response and induces both cyto-
protective and mitogenic functions. It is a critical
component in priming the hepatocytes for proliferation
being responsible for the activations of approximately 40
genes which are not expressed in the normal liver, but
which are immediately triggered in remaining liver tissue
after partial hepatectomy [23, 150].
Signals are mediated via the Janus family tyrosine kin-

ase/signal transducer and activator of transcription
(JAK–STAT) pathway and the Ras–MAPK pathway
[151]. Circulating IL-6 s peak within 6 h after liver resec-
tion [152]. Cressmann et al., demonstrated that IL-6
gene disruption impairs liver generation in mice. In con-
trast, introducing IL-6 enabled hepatocyte proliferation
by activating the STAT3 pathway [153, 154]. This was
confirmed since injecting recombinant human IL-6 (1
mg/kg) into TNFR-I-deficient animals 30 min before
partial hepatectomy restored the initial STAT3 binding
deficiency [155]. Blindenbacher et al., showed that a sub-
cutaneous injection of recombinant human IL-6 (500 ng/
g) prevented postoperative mortality in knockout mice
as long as the injections were sustained [156]. IL-6-
induced activation of STAT3 boosted hepatic gene ex-
pression to maintain metabolic homeostasis after liver
resection [157].
In humans, a peak in the IL-6 levels within 6 h after re-

section that was associated with the remnant liver volume
was detected, which slowly decreased over the following
days [158]. Serial measurements of IL-6 levels after partial
hepatectomy revealed that the levels of IL-6 increased im-
mediately after the operation. IL-6 is considered to be a

sensitive marker of surgical stress, induction of hepatic re-
generation, and the production of acute phase proteins in
the liver [146]. The levels of IL-6 were found to be signifi-
cantly lower in the hepatic vein compared to the radial ar-
tery and the portal vein at the end of the resection. The
authors concluded that circulating IL-6 s might be taken
up and used in the liver and suggested monitoring the dif-
ference between arterial and hepatic venous blood levels
as an indicator for regeneration [159]. Furthermore, defi-
cient IL-6 responses were considered to be a major cause
of impaired regeneration after hepatectomy in patients
with viral hepatitis [160]. Measurements of IL-6/HGF ra-
tios in the local exudative fluid after hepatectomy sug-
gested that both proteins are produced at the site of
injury, but HGF may predominate [161]. ALPPS proce-
dures resulted in a peak of IL-6 levels after stage 1, which
decreased rapidly and did not increase after stage 2. Fur-
thermore, a correlation between the peak IL-6 levels and
HGF was detected [46]. In the setting of human living
donor liver transplantation, higher levels of serum IL-6
were independently associated with increased graft vol-
umes during the first postoperative week [147]. Oyama
et al. demonstrated that patients with a small graft after
living donor liver transplantation showed a higher increase
in IL-6 levels postoperatively and a better regeneration
rate 2 weeks post-transplant [162]. A potential use of ex-
ogenously administered recombinant IL-6 (rhIL-6) as an
inducer of regeneration was investigated in a pilot study
by de Jong et al. [163]. RhIL-6 administration resulted in
an increase of serum HGF, but its effects on the liver were
not evaluated.

Immunohistochemical evaluation
In animal models, liver regeneration is monitored by
histological evaluation of liver tissue [164]. The most
common method is staining proliferating cells [165]
which tracks cell growth and division with proliferation
markers (Fig. 4). In humans, a rapid and inexpensive ap-
proach to monitor regeneration might be analysis of
liver biopsy samples, PCNA, or Ki-67.

PCNA and Ki-67
PCNA and Ki-67 are markers of cell proliferation rou-
tinely used in clinical pathology [166]. PCNA is a nu-
clear non-histone protein that is essential for DNA
synthesis during the cell cycle. It also plays a role in
DNA replication and repair. PCNA expression is ele-
vated during the late G1 to S phase of the cell cycle.
Quiescent and senescent cells have very low levels of
PCNA mRNA [167, 168]. Moreover, Nygård et al.
showed a gradual accumulation of PCNA-positive cells
in the periportal region 6 weeks after 60% partial hepa-
tectomy in pigs. This supported the ‘streaming
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hypothesis’, which states that the newly generated hepa-
tocytes migrate from the periportal to the central region
[169].
The protein Ki-67 is present in the cell nucleus during

the late G1, S, G2, and M phases of the cell cycle. It is
absent in resting cells (G0) [170]. The highest number of
Ki-67 labelled cells was detected 36 h after partial hepa-
tectomy in rats. Labelled cells were located primarily
periportally [171]. Data on humans are again rare. Del-
haye et al. observed that the indices of PCNA labelled
cells decreased with increasing Child-Pugh scores in pa-
tients with liver cirrhosis. After transjugular intrahepatic
portosystemic shunts, the indices dropped significantly
further suggesting that reduced blood flow impairs re-
generation [172]. This was confirmed by Harada et al.,
who detected a low PCNA expression in the hemi-liver
after portal vein embolization before an extended right
lobectomy while high PCNA expression was observed in
the non-embolized portion. The authors concluded that
PCNA is an indicator of hepatocyte proliferation and
liver growth [173]. However, histological evaluation of
liver regeneration by biopsy must be discussed in a con-
troversial setting. Since liver regeneration occurs over a
course of many weeks, regular biopsy would be neces-
sary to monitor the process. This implies that patients
with reduced liver function after resection are prone to
serious clinical problems, particularly, coagulopathy
[174, 175].

Circulating microRNAs (miRNAs)
In additional to the above mentioned markers, there is
emerging evidence that miRNAs might represent prog-
nostic biomarkers for liver regeneration [176]. Various
miRNAs regulate liver functions and miR-122 in particu-
lar was identified to play a role in regulating liver func-
tion in a variety of liver diseases [177]. An HGF
dependent increase of levels of miRNA expression was
detected in vitro linking the classical cytokine and
growth factor induced regeneration pathways with miR-
NAs as key regulators of various biological processes in
the liver [178]. Experiments in rodents revealed that
miR-122 is an early and sensitive biomarker of hepato-
cellular injury at a stage when alanine transaminase, as-
partate transaminase, and total bilirubin are not
detectable. Furthermore, time-course changes in the ex-
pression levels have been shown [179]. An increasing
number of studies have investigated circulating miRNAs
regarding their prognostic potential for acute liver in-
jury. John et al., showed that miR-122, miR-21, and miR-
221 are involved in liver regeneration and might contrib-
ute to spontaneous recovery from acute liver failure
[180]. Furthermore, miR-194, miR-210, miR-483, miR-
4532, and miR-455-3p were identified as diagnostic

biomarkers in acute liver failure [181–183]. In a small
cohort of patients, Starlinger et al. identified the miRNA
signature, which consisted of circulating miRNAs 151a-
5p, 192-5p, and 122-5p, as a potential prognostic tool
for predicting postoperative liver dysfunction, morbidity,
and even mortality. Furthermore, the authors detected
dynamic changes in miRNA expression in the periopera-
tive course [184]. However, confirmatory studies with
larger patient cohorts are needed to provide evidence for
whether miRNA profiling may represent an improved
strategy to identify patients at high risk for liver failure.

Discussion
The liver’s regenerative potential is legendary and de-
pends on a carefully orchestrated symphony of factors
that enable a precise and timely recovery of the liver’s
metabolic and synthetic functions after resection. The
critical time frame for regaining hepatic function and
successful recovery after partial hepatectomy appears to
be 5–7 days. However, prediction of the individual re-
generative capacity with the goal of promoting hepatic
regeneration in our most gravely ill patients is still emer-
ging. The available data for monitoring and predicting
PHLF in humans, based on growth factor and cytokine
expression, are highly heterogenic, with most of these
data obtained from observational studies. Typically, the
case numbers are low, and clinical setting includes resec-
tion as well as transplantation; the analyzed blood and
tissue samples were collected at various time points, and
the described endpoints were extremely variable. The
goal to find a single marker that accurately predicts liver
regeneration in liquid biopsy samples had to be aban-
doned with regard to overlapping and partly redundant
pathways. To address the heterogeneity of patients and
the large numbers of potential markers, high throughput
serial analyses would be helpful to screen, validate, and
confirm biomarkers that predict regenerative potential.

Conclusions
High level evidence on serial measurements of growth
factors and cytokines in blood samples used to predict
liver regeneration after resection is lacking. Some prom-
ising marker candidates for peri-operative monitoring
might be HGF, IL-6, and VEGF. To promote their con-
firmation, large-scale, multi-center prospective clinical
trials are required. However, profiling their individual re-
generative capacity after liver resection is not yet
possible.
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